Výběr z prezentací konference

3rd Annual European Biofuel

June 17-18, 2014, Prague

Zpracoval: Ing. Jaromír Hynek

Major biofuel related challenge for a refinery [especially in the CEE region] is the fragmented regulatory environment

Biofuel obligation in some of the CEE countries - There are no two identical ...

	Obligation type	Fuel and % type	
ни	pooled	Gasoline (e%)	
	pooled	Diesel (e%)	
SK	liter by liter	Gasoline (v%)*	
	•	Diesel (v%)	
HR	pooled	e%	
П	pooled	e%	
AU	pooled**	e%	
SLO	pooled	e%	
DE	pooled	v%	
cz	pooled	Gasoline (e%)	
		Diesel (e%)	
PL	pooled	e%	
RO	liter by liter	Gasoline (v%)	
	neer by neer	Diesel (v%)	

Blending and logistics

- Refinery optimisation is significantly hindered by fragmented bio obligations
- Very complex and flexible logistic system is required

(Un)expected game changers

- ► Increasing significance of waste based biofuels
- ▶ Increasing obligation can result the need of higher blending walls (E10, B10 etc.)
- ► Uncertain regulatory envir. (i.e.: ILUC, GHG)

Mandatory targets in CEE vs rest of EU

CEE countries- not top of the class but not stragglers

CEE Mandatory targets and penalties

Poland and Hungary as most rigorous, Poland with the most ambitious target

UPM Lappeenranta Biorefinery commissioning in summer 2014

ABENGOA

Our landmark projects Biofuels

A global production capacity of more than 2,500 ML/year of bioethanol

2nd generation bioethanol from biomass

- Location: US (2014)
- 95 ML/year from agricultural waste

Other examples

- Location: Spain (2008)
- 200,000 t biodiesel

- Location: Netherlands (2010)
- 480 ML/year 360,000 t DDGS (Dried Distillers Grains with Solubles)
- Largest biofuel plant in Europe

- Location: US (2010)
- 333 ML/year, 230,000 t DDGS

- Location: Uruguay (2015)
- 70 ML/year, 49,000 t of DDGS

ABENGOA

Abengoa Bioenergy Evolution

Abengoa has developed simultaneously its 1G and 2G business since 1994

1994 2003

- Acquisition of High Plains Corporation in U.S.
- 650 ML (170 MG) capacity in US and EU
- Enzymatic Hydrolysis technology selected for 2G

- Acquisition Dedini Agro, Brazil
- Assets in 5 countries, three continents;
 global 3175 ML capacity
- 2G technology program developed; 2G ethanol pilot & demo plants built
- ✓ Construction of 1st cellulosic ethanol commercial scale plant started

2014 Forward

- Startup of first cellulosic ethanol commercial scale plant in Hugoton Kansas
- 2G technology licensed to 3rd
 parties
- Waste-to-biofuels technology developed + commercialized
- Develop new sugar-based applications for fuel and chemicals market e.g. butanol, jet fuel, diesel

ABENGOA

Main Installed Cap

Significant Installed capacity in first and second generation

Munich & Straubing – the two Biotech & Renewables sites

Munich

- Since 2006
- 79 employees
- Main Research & Development Center
- Lab and office space: 3,300 m²
- Pilot plant since 2009

Straubing

- Since 2011
- 16 employees
- sunliquid demonstration plant
- Area: 2,500 m²

Status of cellulosic ethanol development (sunliquid®)

2006 Start of the development (Süd-Chemie) 2012 Demo plant in Straubing (DE) operational

2009 Pilot plant operational, capacity 1t/a

2013 ISCC certification License package ready

> 2014 Fleet test E20 with Mercedes-Benz

Next step First commercial production plants

and heterogenous catalysis

sunliquid[®] is the ideal technology platform for highly sustainable bio-based products

Scheme of commercial scale plant

EU transport renewables in 2012

ILUC proposal

	Commission's Proposal October 2012	European Parliament , first reading 11 September 2013	Council's position 13 June 2014
Cap	5% - food-crop based biofuels	6% - land based (food and energy crops)- FQD and RED >6% ≠ sustainable	7% - food-crop based
Sub- targets		2.5% advanced biofuels,(0,5% by 2016)7,5% renewables in petrol	Non-legally-binding sub-target of 0,5% advanced biofuels (excl. UCO/ TME)
Multiple counting	2x - non-food cellulosic material and ligno-cellulosic material 4x - non-land based biofuels	 1x - waste and residues, cascading principle 2x - UCO and animal fat, cannot be counted towards 2,5% sub-target 4x - algae, RE of non-biological origin; CCU for transport 	 2x - non-food cellulosic material and ligno-cellulosic material, incl. UCO and animal fats 5x - RES_E in road transport (2,5% - now) 2,5x - RES_E in non-road
ILUC factors	Reporting for information purpose in FQD and RED	ILUC-factors in the FQD accounting as of 2020 o be accounted towards 6% GHG target under FQD. By 2016: review of ILUC values	Reporting for information purpose in FQD and RED, including a range. <u>December 2017</u> : review of both, effectiveness of measures and best available science on ILUC factors

Long term growth is broadly expected, but projected future supply will come from non-food based biofuels

Demand by scenario (mb/d			New P	olicies	Current	Policies	450 Sc	enario
	2000	2012	2020	2035	2020	2035	2020	2035
OECD	44.6	40.8	39.4	32.8	40.1	37.1	38.0	24.9
Non-OECD	26.5	39.6	48.3	59.2	49.2	64.2	45.6	45.6
Bunkers	5.2	7.0	7.8	9.3	7.8	9.7	7.5	7.7
World Oil	76.3	87.4	95.4	101.4	97.1	111.0	91.1	78.2
World biofuels	0.2	1.3	2.1	4.1	1.9	3.3	2.6	7.7

- Market potential: according to the latest IEA WEO, biofuels use more than triples in the New Policies Scenario, to 4.1 mboe/d in 2035 (market equating to ~\$140bn pa (@\$0.6/litre)).
- Biofuels meet 37% of road fuel demand in 2035 in Brazil, 19% in US and 16% in EU.
- · Legislative support remains, focus on advanced biofuels.
- Governments appear committed to biofuels looking for supply to come from advanced (non-food based crops) with vispecific targets and support mechanisms.

Drivers remain the same:

- Government have concluded that biofuels offer one of the few solutions to decarbonising the transport sector, whilst supporting economic development and energy security.
- Whilst electric vehicles, natural gas and other renewable transport fuels will all play a part in the overall solution, biofus represent the main technology available at **reasonable scale** and **cost** in the **medium term**.
- As you move from geography to geography the reasons are always the same a wish for energy security, economic
 development or carbon reduction it is just the emphasis that changes.

Hope springs eternal: Selected active and planned advanced biofuel plants worldwide (Existing / Planned)

Advanced biofuels expand - slowly

- Note: Does not include hydrotreated vegetable oil (HVO)
- Industry currently enters large-scale production with first commercial plants coming online
- Operating capacity at 2 billion litres in 2013 could grow to 4 billion litres (65 kb/d) in 2019
 - However: projects continue to get cancelled, or companies go bankrupt
- Perceived investment risk is most important barrier to more rapid deployment
 - → long-term policy framework is needed to spur growth

Biofuels production falling behind targets of IEA Biofuel Roadmap

- In a low CO2 scenario (IEA 2°C Scenario) biofuels' share in total transport increases to 27% in 2050
- Advanced biofuels play key role → only low-carbon fuel alternative for long-distance, heavy transport modes
- Without significant improvements of the policy framework for advanced biofuels, targets in the 2DS will not be met!

⊕ OBCD/IEA ZD14

Existing roadmaps: focus on powertrain and efficiency technologies but lack a cross-cutting view on fuels

Passenger Cars Roadmap Source: Auto Council

- Efficiency improvements, driven by EU level tailpipe emissions targets and air quality regulations, underpin the roadmap.
- The 2020-2030 period is the decade when EVs (PHEVs, BEVs and/or FCEVs) become a
 mainstream offer under energy storage breakthrough condition, assuming adequate grid capacity.
 Development of these technologies driven by the need to meet the long term EU CO₂ targets¹.
- The EC transport goals are also expected to become a driver for Zero Emission Vehicles, e.g. CO₂-free city logistics in major urban centres by 2030 and phasing out conventionally fuelled cars in cities by 2050²

Value Chain 1-4 (Thermo-chemical)

The Forest BtL Project, FI

480 MW, / FT products / 2016-1

Gasification technology: Carbo-V

88 million € NER300 grant

FEED contract for Gasification, gas cleaning, synthesis and OSBL signed.

Biolig® Project, DE

2 MW_t / Synthetic Gasoline / 2013 Pyrolysis and gasification in oper. Synthesis in commissioning

Fast pyrolysis of straw+Gasification (5MW_t) + DME/gasoline synthesis

Forest BtL flowsheet

Chemrec Projects, SE

a. BioDME project

~3 MW_t / DME / 2011

b. Domsjö and Vallvik mills

Proposed Domsjö Site

~200 MW_t / Methanol and DME / **On hold** (Currently awaiting new national regulation on biofuels)

UPM Project

a. Pilot testing at GTI, Chicago, USA

~5 MW_t / syngas production / Ongoing

b. Commercial Demonstration, FR

 \sim 300MW_t / FT products(100 000 t/a) /

Investment decision by 2014;

170 million € NER300 grant

The BioDME Project

The Woodspirit Project, NL

Forest resid / Methanol / Dec 2016

>225 000 tpa Biometnanol

Biomass feedstock into entrained flow gasif.

199 million € NER300 grant

Consortiun of BioMCN, Siemens, Linde and VS Hanab

Site for the Woodspirit Plant

<u>Güssing, AT</u>

8 MW_t / Heat and Power / 2002

H&P plant but also test site for

FT, SNG, higher alcohols and H2

Güssing FT production flow scheme Fossil products (e.g. LGO, HGO, VGO) Wood chips H2/CO=1,5 H2/CO=2 Gasification Gasification Gasification Gasification FT Synthesis Hydrogen (pure/ recycled)

BioTfueL Project, FR

~ 12 MW_t / FT products / 2014

Fuel mix of fossil and renewable Including torrefied biomass

<u>Värmlandsmetanol, SE</u>

~ 111 MW_t / Methanol / 2017

CFB Gasification

2. Bio-methane through gasificatio

<u>GobiGas – Gothenburg Energy, SE</u>

a. Phase 1

Wood pellets / 20 MW, of SNG / 2013

FICFB techn. (type Güssing)

b. Phase 2

Biomass / 80 - 100 MW_t of SNG / 2016

59 million € NER300 grant

E.On Bio2G Project, SE

- a. Pilot testing at GTI, Chicago, USA
- ~5 MW_{th} / syngas production / Ongoing
- b. 1st Commercial plant, Landskrona or Malmö

 \sim 200 MW_{SNG}/ SNG / 2018

PreFEED performed - 4 years to plant completion after decision. Ccurrently awaiting new national regulation on biofuels.

Value Chain 5-7 (Bio-chemical)

5. Ethanol and higher alcohols from sugars through fermantation

Main cellulosic EtOH running demos (>1000 t/y) in EU

Plant Owner	Location	Input capacity (t/year)	Output capacity (t/year)
Clariant (ex Sud Chemie)	Straubing, Germany	Agriculture residues, wheat straw	1 000
Abengoa Bioenergy, Biocarburantes Castilla y Leon, Ebro Puleva	Babilafuente, Salamanca, Spain	25 000 t/year (barley/wheat straw, corn stover)	4 000
Inbicon (Dong Energy)	Kalundborg, Denmark	30 000 t/year (wheat straw, other lignocellulosics)	4 300
Chempolis	Oulu (Chempolis R&D Center), Finland	25 000 t/year (non-wood, non-food raw material) formicobio ™ process	running ?
Beta Renewables (JV Chemtex (M&G), TPG, Novozymes)	Crescentino, Italy	Non-food biomass (giant cane and wheat straw)	40 000

6. Hydrocarbons from biomass via Biological and / or chemical processes

Piteå, SE

Close to100 000 tpy / 2012 (capacity increase announced)

Tall oil (residue of chemical pulping)
via hydrotreatment to HQ diesel
using the Sunpine technology

<u>Lappeenranta, FI</u>

100 000 tpy/ 2014

Tall oil (residue of chemical pulping)
via hydrotreatment to HQ diesel
using the UPM BioVerno tecnology

Domestic Consumption of Biodiesel 2007-2013

Source: BAFA

Increasing share of HVO and UCOME in Biodiesel

Consumption in Germany 2007-2013

Source: BAFA, BLE, UFOP

DĚKUJI ZA POZORNOST